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concentration of Ta and V showed a positive correlation because their concentration
decrease, whereas concentration of As, Cu, Ga, Mn, and Zn showed a negative correlation
because their concentration increase along in time chronosequence. The dynamic
correlation could be found that concentration of Co, Ni, Pb, Sn, and Th decrease from
Station A to Station B and then increase in Station C, whereas concentration of Cr, Fe,
Hf, and Te increase from Station A to Station B and then decrease in Station C.
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= INTRODUCTION The each of waters had their_

— s
|

has contributed to the ecological problems. It has been - . .
[6]. These conditions were influenced by ecological

known as the major source eavy metal contamination ) R
. succession in time chronosequence [7] and the
such as heavy metals in

ecological changes of ex-tin mining ponds have occurred
I :c one of water resource were

contaminated by heavy metals that can be accumulated in ) ] )
as long as time chronosequence was interactions and

food chains secondary activities of the water [1-3]. ] ¢ chemical lexion b )
Some of the  Mn, Fe, [ reactions o emical complexion between organic

. o . . ds, i tal factors, d i i
Ni, Sn, As, ] Cd were detected in site of ex-tin mining compounds, environmen aclors, and  Inorganic
[4-5].

Tin mining activity is an anthropogenic activity that

for along time [8]. The implication of ecological changes

compounds, include presence of heavy metals [9].
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The researches of heavy metals in ex-tin mining

ecosystems have been done, however, not for
correspondence of heavy metals distributions and ex-tin
mining ponds in time chronosequence. While an

understanding this correspondence was crucial to predict

ecosystems conditiops and to detect environment change.
The understanding S

I becomes an

important part of aquatic ecosystem management as
water sources for secondary activities and habitable for
organisms.

m EXPERIMENTAL SECTION
Materials

The study areas were located in Bangka Regency,
Bangka Belitung Archipelago Province of Indonesia. The
considered study sites cover three ponds of ex-tin mining
with chronosequence ranging in time. The study areas
were encoded as Station A (pond in age < 1 year), Station
B (pond in age 5-10 years), and Station C (pond in age >
15 years).

The coordinate of Station A were 01°59' S in points
36.0" 36.2"; 36.4"; 36.5"; 36.6" and 106°06' E in points
36.5"; 36.9"; 37.3"; 37.4"; 37.5". The coordinate of Station
B were 01°59' S in points 41.3"; 41.4"; 41.5"; 42.4"; 42.5"
and 106°06' E in points 39.2";39.5"; 41.4"; 42.7"; 43.1". The
coordinate of Station C were 01°55' S in points 40.9"; 58.9";
59.1% 59.2"; 59.5" and 106°06' E in points 19.5" 19.7"
19.9"22.4",29.2".

In the each of research stations points, water
sampling was done <4 m in depth (station code A.1; B.1;
and C.1) and composite sampling were done to water and
sediment > 4 min depth (station code A.2; B.2; and C.2).

Instrumentation

The water samples and composite samples were
analyzed pH value by pH meter (PH-009(I)-A) Sun Care.
The speciation and concentration of heavy metals
analyzed by X-Ray Fluorescence (Rigaku) with three light
spreader metals of copper (Cu), molybdenum (Mo), and
aluminum (Al). Also, the pH and moisture of soil around

the ponds were measuregmby pH-moisture meter. The
correspondence between and

the I 25

analyzed by PAST (Palaentological Statistics) 3.
m RESULTS AND DISCUSSION
pH Value of Water and Soil

Tin mining activity had generated the ex-tin
mining ponds as one of the water resources. However,
water quality in the ponds had serious ecological
problem. The ex-mining activity produced acid mine
drainage (AMD) that can caused the long-term
impairment of water quality and biodiversity. The pH
value of ex-tin mining water and soil pH value indicated
that the acid could be found in Station A (pond in age <
1 year) and Station B (pond in age 5-10 years) and the
neutral value could be found in Station C (pond in age >
15 years). In the each of research stations points, water
samples < 4m in depth indicated more acid than the
composite samples (water and sediment > 4 m in depth)
(Fig. 1).

The ) was [

I (10]. In aci drainage, presence and mobility

of elements such [, As, INEEEEEGEG_——
I 7. [l 2lso ionic activity and sulphide
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Fig 1. Soil and water pH value
I of
The Station A (pond in age < 1 year), Station B (pond in
age 5-10 years), and Station C (pond in age > 15 years).
The station code (A.1, B.1, and C.1) showed water
samples < 4 m in depth and the station code (A.2, B.2,
and C.2) showed composite samples (water and
sediment >4 m in depth)
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minerals oxidation caused pH value decreasing [11-12].  distribution |J ] where pH value decreasing
Furthermore, the low pH condition implicated in  causedincreasing in heavy metal desorption [15].
oxidation state, toxicity, and mobility of elements [9]. The Pattern of Heavy Metals Distribution
In long time chronosequence more than 15 years in

The heavy metals that detected in ex-tin mining

ponds were 16 element that As, Co, Cu, Cr, Fe, Ga, Hf,
Sn, Ta, Te, Th, Mn, Ni, Pb, Zn, and V. All of these heavy
metals were distributed in almost of research stations.

the Station C caused changes water quality of ex-tin
mining ponds were more stable than Station A and
Station B. The indicator for it was pH value increased to
neutral conditions (7.0-7.4) and other parameters that
indicated water quality was more habitable for organisms’ Distribution of heavy metals can be grouped in low pH
life such as fishes. The pH value and other parameters

changes, indirectly, caused ecological productivity

value or acid condition (in Station A and Station B) and
neutral condition (in Station C) (Table 1).
increasing. The chronosequence in long time caused There were nine heavy metals with higher

changes in nutrient availability and resource supply for concentration werggfound in Station C than Station A

ecosystem productigsty [13]. and Station B that »Ga, . . I

The pH valueb - The average of As concentration were 1.7475 ppm
- the determination of _ (Station C) > 1.6075 ppm (Station B) > 1.0775 ppm (Station
e A). The concentration of Co were 3.32 ppm (Station C) >

. Furthermore, acid mine drainage had a major 2.525 ppm (Station A) > not detected (Station B). The

contriggntion in heavy metal contamination [14]. There concentration of Cu were 6.375 ppm (Station C) >

was 5.4825 ppm (Station B) > 4.9775 ppm (Station A).
Table 1. Distribuion - - I

Heavy Metals Co tration (ppm)

No  Heavy Metals In Station A Ina In D

S ] T S EEC B
1 As nd 2155 nd 3.215 24 1.095
2 Ga w 4.275 nd 4.47 9.76 nd
3 v 7 m 0 0 ke
4 Te B || 102 nd nd 5.8
5 Cr nd 4.735 nd 4.945 nd 0.67
6 Zn nd 6.05 nd 8.1 8.17 3.905
7 Sn 47 82.8 503 514 61.8 57.15
8 Mn nd 13.05 nd 13.6 30.8 14.85
9 Fe 21.4 1481.3 148 2344 1590 849.05
10 Co nd 5.05 nd nd 6.64 nd
11 Ni nd 4.09 nd 2.875 3.48 1.905
12 Cu 3.08 6.875 3.19 7.775 8.94 3.81
13 Pb nd 6.7 nd 6 8.21 4.62
14 Th nd 4.605 nd 4.38 13.5 7.05
15 Hf 6.71 3.21 8.21 3.32 nd 9.38
16 Ta 4.94 2615 4.16 2.995 nd 2.805

*) nd (not detected). The Station A (pond in age < 1 year), Station B (pond in age 5-10 years), and Station C (pond in age > 15 years).
The station code (A.1, B.1, and C.1) showed water samples <4 m in depth and the station code (A.2, B.2, and C.2) showed composite

samples (water and sediment > 4 m in depth)
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The concentration of Ga were 4.88 ppm (Station C) >
2.235 ppm (Station B) > 2.1375 ppm (Station A). The
concentration of Mn were 22.825 ppm (Station C) > 6.8 ppm
(Station B) > 6.525 ppm (Station A). The concentration of
Ni were 2.6925 ppm (Station C) > 2.045 ppm (Station A)
> 1.4375 ppm (Station B). The concentration of Pb were
6.415 ppm (Station C) > 3.35 ppm (Station A) > 3.0 ppm
(Station B). The concentration of Th were 10.275 ppm
(Station C) > 2.3025 ppm (Station A) > 2.19 ppm (Station
B). The concentration of Zn were 6.0375 ppm (Station C)
> 4.05 ppm (Station B) > 3.025 ppm (Station A).

In addition, there were seven heavy metals with
higher concentration in Station A or Station B than
Station C that Cr, Fe, Hf, Sn, Ta, Te, and V. The average
of Cr concentration were 2.4725 ppm (Station B) >
2.3675 ppm (Station A) > 0.335 ppm (Station C). The
concentration of Fe were 1246 ppm (Station B) >
1219.53 ppm (Station C) > 751.35 ppm (Station A). The
concentration of Hf were 5.765 ppm (Station B) > 4.96 ppm
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(Station A) > 4.69 ppm (Station C). The concentration
of Sn were 64.9 ppm (Station A) > 59.475 ppm (Station
C) > 50.85 ppm (Station B). The concentration of Ta
were 3.7775 ppm (Station A) > 3.5775 ppm (Station B) >
1.4025 ppm (Station C). The concentration of Te were
51 ppm (Station B) > 2.9 ppm (Station C) > not detected
(Station A). The concentration of V were 0.42 ppm
(Station A) > 0.335 ppm (Station C) > not detected

(Station B). ﬂ

Their concentration
I i I s:oved three
patterns distribution that a positive correlation, a
negative correlation, and a dynamic correlation. The
positive correlation indicated that concentration of
heavy metals decreased along chronosequence in time in
ex-tin mining ponds. The negative correlation indicated
that concentration of heavy metals increased along
chronosequence in time in ex-tin mining ponds. The
dynamic correlation indicated that concentration of
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Fig 2. Distribution of GG

The Station A (pond in age < 1 year), Station B (pond in age 5-10 years), and Station C (pond in age > 15 years). The
station code (A.1, B.1, and C.1) showed water samples < 4 m in depth and the station code (A.2, B.2, and C.2) showed

composite samples (water and sediment > 4 m in depth)
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heavy metals on decreased or increased along

chronosequence in time in ex-tin mining ponds.
The elements of Ta and V had a positive correlation

in time chronosequence in ex-mining ponds with their

concentration on decreasing. The elements of As, Cu, Ga,

Mn, and Zn had a negative correlation with their

concentration on increasing along in  time

chronosequence. In addition, Co, Ni, Pb, Sn, and Th had

decreased concentration from ponds with age < 1 year to

ponds with age between 5-10 years and then increased
concentration in ponds with age > 15 years. The elements

of Cr, Fe, Hf, and Te had increased concentration from

ponds with age < 1 year to ponds with age between 5-10

years and then decreased concentration in ponds with age

> 15 years (Fig. 2).
The chronosequence in long time caused changes in

heavy metals concentration were decreased as the primary

succession progression [16]. The low pH value implicated
to dissolved oxygen (DO) [17] and low DO in acid mine
drainage implicated to biological oxygen demand (BOD)

by microorganisms for their growth and other ecological

factor changes such as nitrogen and phosphate [7,18-19].

R— 1) 251 20

primary succession, ] led to changes in the
biogeochemical cycles of nutrients in ponds [20-22],
indirectly implicated to dissolved and suspended solid
[23-24] [25-31].
Therefore, pH value changes, availability of elements
included heavy metals, environmental characteristics,

and ecosystem eutrophic levels

and eutrophication had a positive inter-relationships in
their correspondence.

These conditions, however, had a negative
correlation to heavy metals residue decreasing in Station
C. The heavy metals in Station C were dominated As, Zn,
Mn, Co, Ni, Cu, Pb, and Th were higher than Station A
and Station B, although these metals and include Ga, Cr,
Sn, Fe, Hf, and Ta were detected in all of the research
station. The results indicated that chronosequence in
positive correlations, but not for

ﬁhanges and had
L

Il Correspondence Analysis NG

Distribution

The correspondence analysis also sho that
there was not a positive correlation between

time of ponds caused ecologic
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Fig 3. Correspondence analysis between distributionh and [
I - . The Station A (pond in age < 1 year), Station B (pond in age 5-10 years), and

Station C (pond in age > 15 years). The station code (A.1, B.1, and C.1) showed water samples < 4 m in depth and the
station code (A.2, B.2, and C.2) showed composite samples (water and sediment > 4 m in depth)
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heavy metals distribution (Fig. 3). The ecological changes
in chronosequence succession of ex-tin mining ponds had
not significantly affect on speciation and concentration of

heavy Is. Thus, there was the other factor that had
affﬂcteb

I soil B vater contributed
distribution Jif heavy I 32 I
I were

,include
and the |

I (15]. The clay [l mud were found to be
dominant in the sediment of Station A and Station B,
however, sand was found to be dominant in Station C.
The clay and mud had a positive correlation and
sand had a negative correlation to a presence, affini d
minerals structure [33-34]. The clay and mud had a[ﬁ

(CEC),
and [N of= "q I

— also
I @ dsorbed
the I ccumulated, [
carried diagenetically [35-
S herior, R o
[l Station B were lower than Station C.

m CONCLUSION

had
affected ecological dynamic such as pH value change and
heavy metals distribution. The pH value of ex-tin mining
ponds moved from acid to neutral condition, however, it
had been taken for a long time of the chronosequence.
The consequence of low pH value can implicated to
microorganisms’ growth, nutrients, and environment
factors in primary succession. Further, it implicated to
heavy metals interaction, whereas the heavy metals
residue should be in low concentration in long time
chronosequence of ex-tin mining ponds.

The heavy metals that detected in ex-tin mining
ponds were 16 element that As, Co, Cu, Cr, Fe, Ga, Hf, Sn,
Ta, Te, Th, Mn, Ni, Pb, Zn, and V. All of these heavy
metals were distributed in almost of research stations.
Distribution of heavy metals can be grouped in low pH
value or acid condition (in Station A and Station B) and

259

neutral condition (in Station C). There were nine heavy
metals with higher concentration wpse found in Station
C than Station A and Station B th;tvh, Ga, IR
I Th. B 2ddition, there were seven heavy

metals with higher coggentration in Station A or Station
B than Station C that

There were three patterns
.y

I that a positive correlation, a negative correlation,

and a dynamic correlation. The chronosequence in time
had affects on heavy metals distribution. Elements of Ta
and V had a positive correlation in time chronosequence
in ex-mining ponds with their concentration on
decreasing. Elements of As, Cu, Ga, Mn, and Zn had a
negative correlation with their concentration on
increased along in time chronosequence. In addition,
Co, Ni, Pb, Sn, and Th had decreased concentration
from ponds with age < 1 year to ponds with age between
5-10 years and then increased concentration in ponds
with age > 15 years. Elements of Cr, Fe, Hf, and Te had
increased concentration from ponds with age < 1 year to
ponds with age between 5-10 years and then decreased
concentration in ponds with age > 15 years.

The chronosequence in time can be a factor that
contributed to heavy metals distribution. However, the
sediment factor had a significant effect to distribution of
heavy metals in the ex-tin mining ponds, where clay and
mud were more effective than sand in accumulation,
adsorption, and interaction with heavy metals and
carried them diagenetically to bottom sediments.
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