LAMPIRAN

Stasiun		Parameter Fisika		Parameter Kimia
-	Suhu (⁰ C)	Salinitas (%))	Arus (m/s)	Klorofil-a (mg/m ³)
1	30	31	3,89	0,823
2	30	32	3,82	0,801
3	29	32	4,12	1,060
4	29	33	3,90	1,223
5	31	32	3,87	1,602
6	29	32	3,83	1,570

Lampiran 1. Parameter Fisika dan Parameter Kimia Perairan

Lampiran 2. Perhitungan Nilai Klorofil-a

Stasiun 1	
Klorofil-a	= 26,7 [($E^{0}_{665} - E^{0}_{750}$) - ($E^{+}_{665} - E^{+}_{750}$)] x v x = $\frac{V}{L}$
	$= 26,7 [0,9 - 0,47] - [0,7 - 0,425] \times 50 \times = \frac{10}{1}$
	$= 0,823 \text{ mg/m}^3$
Stasiun 2	
Klorofil-a	= 26,7 [($E^{0}_{665} - E^{0}_{750}$) - ($E^{+}_{665} - E^{+}_{750}$)] x v x = $\frac{V}{L}$
	= 26,7 [0,85 - 0,45] - [0,7 - 0,41] x 50 x = $\frac{10}{1}$
	$= 0,801 \text{ mg/m}^3$
Stasiun 3	
Klorofil-a	= 26,7 [($E^{0}_{665} - E^{0}_{750}$) - ($E^{+}_{665} - E^{+}_{750}$)] x v x = $\frac{v}{L}$
	= 26,7 [0,9 - 0,45] - [0,7 - 0,45] x 50 x = $\frac{10}{1}$
	$= 1,060 \text{ mg/m}^3$
Stasiun 4	
Klorofil-a	= 26,7 [($E^{0}_{665} - E^{0}_{750}$) – ($E^{+}_{665} - E^{+}_{750}$)] x v x = $\frac{V}{L}$
	$= 26,7 [1,1-0,58] - [0,8-0,53] \ge 50 \ge \frac{10}{1}$
	$= 1,223 \text{ mg/m}^3$
Stasiun 5	ALC: NO ALC: N
Klorofil-a	= 26,7 [($E^{0}_{665} - E^{0}_{750}$) - ($E^{+}_{665} - E^{+}_{750}$)] x v x = $\frac{v}{L}$
	$= 26,7 [1,1-0,5] - [0,8-0,6] \times 50 \times = \frac{10}{1}$
	$= 1,602 \text{ mg/m}^3$
Stasiun 6	
Klorofil-a	= 26,7 [($E^{0}_{665} - E^{0}_{750}$) – ($E^{+}_{665} - E^{+}_{750}$)] x v x = $\frac{v}{L}$
	$= 26,7 [0,98-0,5] - [0,7-0,5] \ge 50 \ge \frac{10}{1}$
	$= 1,570 \text{ mg/m}^3$

Lampiran 3. Contoh Peta Sebaran SPL Siang Bulan April 2010

Lampiran 4. Contoh Peta Sebaran SPL Malam Bulan April 2010

Lampiran 5. Contoh Peta Distribusi Konsentrasi Klorofil-a Bulan Januari 2011

Chlorophyll a concentration Mean (mg m^-3) 0.01 0.04 0.17 0.72

Musim	Dulon	Catch (Kg)					Ej	<i>ffort</i> (Tri	p)			CPUE (Kg/Trip)					
Musim	Dulali	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014	
	Des	18.316	20.842	9.350	18.298	17.293	221	236	176	211	287	110,37	27,05	14,71	51,43	41,31	
Barat	Jan	24.392	6.384	2.589	10.852	11.856	188	184	265	178	187	45,28	38,60	23,32	4,37	4,05	
	Feb	8.512	7.102	6.180	777	757	200	198	238	262	140	62,03	24,73	15,59	68,90	19,39	
D	Mar	12.405	4.896	3.710	18.051	2.715	193	245	239	231	215	184,84	75,85	58,89	53,79	107,69	
Perannan	Apr	35.674	18.583	14.075	12.425	23.154	169	232	241	228	205	102,85	66,75	67,12	103,58	103,27	
I (D = I)	Mei	17.381	15.487	16.175	23.617	21.171	201	221	268	223	162	30,86	58,15	42,24	89,72	38,80	
	Jun	6.202	12.852	11.320	20.008	6.285	188	209	226	230	126	38,64	77,82	78,96	39,65	40,56	
Timur	Jul	7.264	16.264	17.845	9.120	5.110	187	185	253	198	188	74,65	83,05	77,14	20,18	20,00	
	Ags	13.960	15.365	19.516	3.996	3.760	188	172	131	115	149	41,42	53,89	50,06	6,73	17,19	
D 111	Sep	7.787	9.269	6.558	774	2.561	147	168	166	239	114	55,05	71,69	63,92	70,14	61,99	
Perainan $\mathbf{I} (\mathbf{T} - \mathbf{R})$	Okt	8.092	12.044	10.610	16.764	7.067	210	242	228	229	238	116,79	98,55	104,47	89,69	77,88	
$\mathbf{H}(\mathbf{I} - \mathbf{B})$	Nop	24.526	23.850	23.820	20.539	18.535	208	189	147	193	194	88,06	110,28	63,61	94,81	89,14	
	Jumlah	184.511	162.938	141.748	155.221	120.264	2.300	2.481	2.578	2.537	2.205	950,82	786,41	660,02	692,99	621,27	

Lampiran 6. Perhitungan hasil tangkapan (catch) per upaya penangkapan (effort) ikan tenggiri permusim dengan alat tangkap Gillnet hanyut

Lampiran 7. Perhitungan hasil tangkapan (*Catch*) per upaya penangkapan (*Effort*) ikan tenggiri permusim dengan alat tangkap Pancing

Musim	Dulan	_		Catch (Kg)				Ej	ffort (Trij	p)		CPUE (Kg/Trip)				
Musim Bula Barat Des Barat Jan Fet Fet Peralihan Ap I (B - T) Ma Jun Jun Timur Jun Peralihan Seq II (T - B) Ok Jun Jun	Dulali	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014
	Des	7.505	8.388	5.540	9.048	8.758	1.047	645	578	571	340	6,97	10,66	5,87	13,05	22,24
Barat	Jan	7.300	6.875	3.391	7.451	7.561	526	638	448	311	319	8,52	2,51	11,27	5,02	15,45
	Feb	4.483	1.603	5.050	1.562	4.927	524	949	706	627	384	9,98	6,03	11,05	34,78	17,69
Denskhan	Mar	5.227	5.727	7.803	21.804	6.793	657	931	712	714	449	11,82	8,68	10,36	10,62	68,61
rerainan	Apr	7.768	8.078	7.373	7.585	30.806	564	838	704	614	421	37,02	9,41	8,57	29,12	121,62
I (B – I)	Mei	20.880	7.882	6.035	17.882	51.200	549	859	682	551	467	13,06	7,36	8,91	11,95	51,94
	Jun	7.168	6.323	6.078	6.583	24.256	517	630	675	578	370	9,22	12,42	10,90	12,68	44,91
Timur	Jul	4.766	7.822	7.355	7.329	16.617	587	518	626	499	240	8,60	9,00	8,89	12,48	26,95
	Ags	5.050	4.663	5.564	6.226	6.467	550	448	412	326	156	6,49	9,75	9,79	7,84	24,67
Davalihan	Sep	3.571	4.369	4.032	2.556	3.848	507	438	576	517	230	6,19	8,45	7,53	16,68	51,79
reraiman II (T P)	Okt	3.140	3.703	4.335	8.623	11.911	1.010	727	504	507	278	10,58	10,85	9,19	15,01	35,53
$\mathbf{II} (\mathbf{T} - \mathbf{B})$	Nop	10.685	7.890	4.630	7.611	9.876	877	644	586	604	289	8,56	13,02	9,45	14,98	30,30
	Jumlah	87.543	73.323	67.186	104.260	183.020	7.915	8.265	7.209	6.419	3.943	137,02	108,15	111,77	184,21	511,68

Musim	Dulan		F	PI Gilln	et			Effo	ort std Gi	llnet		FPI Pancing					Effort std Pancing				
Musiiii	Dulali	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014
	Des	1	1	1	1	1	221	236	176	211	287	0,06	0,39	0,40	0,25	0,54	66,14	254,15	230,52	144,87	183,03
Barat	Jan	1	1	1	1	1	188	184	265	178	187	0,19	0,07	0,48	1,15	3,82	99,01	41,53	216,55	357,83	1.217,11
	Feb	1	1	1	1	1	200	198	238	262	140	0,16	0,24	0,71	0,50	0,91	84,27	231,61	500,57	316,47	350,28
Peralihan I (B – T)	Mar	1	1	1	1	1	193	245	239	231	215	0,06	0,11	0,18	0,20	0,64	42,03	106,50	125,20	141,02	286,05
	Apr	1	1	1	1	1	169	232	241	228	205	0,36	0,14	0,13	0,28	1,18	203,02	118,07	89,92	172,63	495,77
	Mei	1	1	1	1	1	201	221	268	223	162	0,42	0,13	0,21	0,13	1,34	232,31	108,73	143,90	73,37	625,21
	Jun	1	1	1	1	1	188	209	226	230	126	0,24	0,16	0,14	0,32	1,11	123,35	100,52	93,15	184,83	409,73
Timur	Jul	1	1	1	1	1	187	185	253	198	188	0,12	0,11	0,12	0,62	1,35	67,65	56,14	72,13	308,50	323,35
	Ags	1	1	1	1	1	188	172	131	115	149	0,16	0,18	0,20	1,16	1,44	86,21	81,07	80,54	379,77	223,88
Dorolihon	Sep	1	1	1	1	1	147	168	166	239	114	0,11	0,12	0,12	0,24	0,84	57,04	51,65	67,82	122,94	192,14
Peralihan II (T – B)	Okt	1	1	1	1	1	210	242	228	229	238	0,09	0,11	0,09	0,17	0,46	91,49	80,06	44,32	84,86	126,81
	Nop	1	1	1	1	1	208	189	147	193	194	0,10	0,12	0,15	0,16	0,34	85,23	76,06	87,10	95,43	98,25

Lampiran 8. Jumlah perhitungan nilai faktor daya tangkap (FPI) Fishing Power Index dan Effort standar dari alat tangkap Gillnet hanyut dan alat tangkap pancing.

Lampiran 9. Jumlah total perhitungan musiman hasil tangkapan (*Catch*) per upaya penangkapan (*Standar effort*) ikan tenggiri di Perairan Bangka tahun 2010 - 2014 dari alat tangkap *Gillnet* hanyut dan alat tangkap Pancing.

Musim	Dulon			Catch (Kg)				Standa	r Effort ((Trip)			CPUE Standar (Kg/Trip)				
WIUSIIII	Dulali	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014	
	Des	31.692	13.259	5.980	18.303	1 <mark>9.41</mark> 7	287	490	407	356	470	110,37	27,05	14,71	51,43	41,31	
Barat	Jan	12.995	8.705	11.230	2.339	5.684	287	226	482	536	1404	45,28	38,60	23,32	4,37	4,05	
	Feb	17.632	10.623	11.513	39.855	9.508	284	430	739	578	490	62,03	24,73	15,59	68,90	19,39	
Danalihan	Mar	43.442	26.661	21.448	20.010	53.960	235	352	364	372	501	184,84	75,85	58,89	53,79	107,69	
rerailnan	Apr	38.261	23.369	22.210	41.499	72.371	372	350	331	401	701	102,85	66,75	67,12	103,58	103,27	
I(B-I)	Mei	13.370	19.175	17.398	26.591	30.541	433	330	412	296	787	30,86	58,15	42,24	89,72	38,80	
	Jun	12.030	24.086	25.200	16.449	21.727	311	310	319	415	536	38,64	77,82	78,96	39,65	40,56	
Timur	Jul	19.010	20.028	25.080	10.222	10.227	255	241	325	506	511	74,65	83,05	77,14	20,18	20,00	
	Ags	11.358	13.638	10.590	3.330	6.409	274	253	212	495	373	41,42	53,89	50,06	6,73	17,19	
Dauglikan	Sep	11.232	15.747	14.945	25.387	18.978	204	220	234	362	306	55,05	71,69	63,92	70,14	61,99	
reraiman II (T D)	Okt	35.211	31.740	28.450	28.150	28.411	301	322	272	314	365	116,79	98,55	104,47	89,69	77,88	
$\mathbf{II} (\mathbf{T} - \mathbf{B})$	Nop	25.821	29.230	14.890	27.346	26.051	293	265	234	288	292	88,06	110,28	63,61	94,81	89,14	
	Jumlah	272.054	236.261	208.934	259.481	303.284	3.538	3.787	4.330	4.920	6.737	950,82	786,41	660,02	692,99	621,27	

Contoh Perhitungan :

1. Nilai CPUE masing-masing alat tangkap bulanan :

CDUE Cillmot	Catch Gillnet Jan2010
CPUE GIIINEI Jan2010	Effort Gillnet Jan2010
	$=\frac{8.512}{188}=45,28 \ kg/trip$
CPUE Pancing Jan2010	$= \frac{Catch Pancing Jan2010}{Effort Pancing Jan2010}$ $= \frac{4.483}{526} = 8,52 \ kg/trip$
	520

2. Metode standarisasi alat tangkap. Dalam hal ini gillnet dijadikan sebagai alat tangkap standar, karena nilai CPUE gillnet adalah nilai CPUE tertinggi jika dibandingkan dengan alat tangkap yang lain. Jadi CPUE standar yang di gunakan adalah CPUE gillnet.

Nilai Fishing Power Indeks (FPI) masing-masing alat tangkap :

EDI Cillnet	CPUE Gillnet Jan2010	45,28 - 1
FFI G uinet J _{an} 2010	CPUE standar Jan2010	- 45,28 - 1
EDI Danaina	_ CPUE Pancing Jan2010	8,520.10
TTTTTUNCING Jan2010	CPUE standar Jan2010	$-\frac{1}{45,28}-0,19$

Nilai effort masing-masing alat tangkap yang telah distandarisasi :

F _{std} Gillnet _{Jan2010}	= FPI Gillnet _{Jan2010} x Effort Gillnet _{Jan2010}
	$= 1 \times 188 = 188 \ trip$
F _{std} Pancing Jan2010	= FPI Pancing Jan2010 x Effort Pancing Jan2010
	= 0,19 x 526 = 99,01 <i>trip</i>

Total Catch (Gillnet + Pancing) $_{Jan2010}$ = 8.512 + 4.483 = 12.995 kg

Std Effort (Gillnet + Pancing) Jan2010	= 188 + 99,01	= 287 <i>trip</i>

CDUE Cille of	Total catch (Gillnet+Pancing)Jan2010
CPUE GIIINEI Jan2010	= Std Effort(Gillnet+Pancing)Jan2010
	$=\frac{12.995}{287}=45,28 \ kg/trip$

					Si	uhu Permu	SST night SST night Yahun 2010 2011 2012 2013 2014								
Musim	Bulan			SST day					SST night						
wushii	Dulan					Ta	ahun								
		2010	2011	2012	2013	2014	2010	2011	2012	2013	2014				
	Des	28,5	28,3	30,1	30,1	29,4	27,2	27,4	29,3	27,5	29,0				
Barat	Jan	28,6	27,8	28,2	28,7	27,4	27,2	25,9	27,5	28,0	26,6				
	Feb	29,2	28,3	28,9	29,1	27,6	28,6	27,7	27,6	27,5	26,5				
	Mar	30,2	29,0	29,8	29,3	28,5	29,1	27,1	28,3	28,8	27,8				
Peralihan I (B – T)	Apr	31,6	29,9	30,7	31,2	31,0	30,1	28,6	29,5	29,3	29,3				
	Mei	31,8	30,6	31,0	31,4	31,3	30,8	29,7	30,1	29,8	30,1				
	Jun	31,2	30,5	30,6	31,3	31,2	29,8	29,7	29,8	30,6	29,8				
Timur	Jul	30,5	29,6	29,6	31,3	30,2	29,7	28,9	28,9	29,4	29,4				
	Ags	30,4	29,4	29,1	29,6	29,8	29,2	28,8	28,8	28,6	29,0				
	Sep	30,7	29,9	29,4	29,9	29,7	29,1	29,0	28,8	28,8	28,6				
Peralihan II (T – B)	Okt	30,4	30,0	30,3	30,6	30,1	29,1	28,4	29,3	28,7	28,9				
	Nop	31,1	30,4	30,8	30,3	30,7	28,5	29,0	29,3	28,4	29,7				

Lampiran 10. Nilai sebaran rata - rata SPL di Perairan Bangka dan sekitarnya

Lampiran 11. Nilai rata - rata konsentrasi klorofil-a di Perairan Bangka dan sekitarnya

			Konsentrasi Kl	orofil-a (mg/m³))	
Musim	Bulan		Та	hun		
		2010	2011	2012	2013	2014
	Des	0,8	1,3	0,7	1,3	0,4
Barat	Jan	0,5	1,0	0,3	0,5	0,5
	Feb	0,6	0,3	0,4	2013 1,3 0,5 0,5 0,4 0,7 0,8 0,7 0,6 0,5 0,5	0,3
	Mar	0,5	0,7	0,4	0,5	0,3
Peralihan I (B – T)	Apr	0,6	0,3	0,5	0,4	0,4
	Mei	0,7	0,6	0,5	0,7	0,5
	Jun	0,9	0,7	0,7	0,8	0,6
Timur	Jul	0,8	0,6	0,6	2013 1,3 0,5 0,5 0,5 0,4 0,7 0,8 0,7 0,6 0,5 0,5 0,5 0,6 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	0,5
	Ags	0,6	0,5	0,5		0,5
	Sep	0,5	0,4	0,5	0,5	0,4
Peralihan II (T – B)	Okt	0,4	0,4	0,4	0,5	0,5
	Nop	0,6	0,4	0,4	0,7	0,4

Lampiran 12. Tutorial Pengolahan Data Citra Aqua MODIS

- a) Langkah-langkah Pengolahan Data Citra Klorofil-a dan SPL level 3 dengan menggunakan *Software SeaDAS*
- 1. Buka terminal program. Untuk membuka program seaDAS ketik "**seadas –em.**" Setelah itu akan tampil *seadas main menu*.

2. Klik "Dislpay" kemudian pilih "seadisp" sehingga muncul seadisp main menu.

3. Kemudian klik "Load" kemudian pilih "MODIS" pada seadisp main menu. Masukkan data citra yang sudah didownload dengan mengklik "Select" lalu "OK."

4. Pilih *band* (parameter) yang diinginkan (konsentrasi klorofil-a/SPL) dan masukkan koordinat daerah yang akan ditampilkan, lalu klik **"Load."**

- Ortan	were mode (toot] monthment strengt mode]	Autor Response Formation and Parameter States (1997) and (1997) an	-
Providence -	C HIMINY AND THE WORKS TO CARD TO AND A THE	avera angle and the second average of the second	1000
and a		And some store 4 4 % And some some store 100 100 %	-
and an and a second sec		interaction and an and a second	1
			~
	Contraction of the second seco		-
		CONTRACTOR OF THE OWNER	

5. Kemudian akan keluar citra daerah yang diinginkan pada band list selection. Klik **"display"** untuk melihat tampilan citra. Untuk membuat garis lintang dan bujur pada gambar atau display pilih menu [setups] – [gridline setup].

- 6. Hasil updatetan warna dapat dipilih pada pilihan nomor 1. Pengaturan warna bar ini bisa dilakukan untuk proses selanjutnya yang membutuhkan penggantian warna.
- Untuk mewarnai garis pantai pilih menu [setups] [coastline setups] pilih warna [GO]. Untuk memberi warna pada daratan dengan cara [Setups] – [landmask setups]. Untuk mengganti tampilan color bar dengan cara [Setups] – [color bar setup] – [vertical/horizontal] – [color range] bisa dibanti sesuai dengan keinginan.

- 8. Output ASCII dengan menu [function] [output] [data] [ASCII] [setup] [delete] [clear] masukkan data yang diinginkan satu persatu (lat, lon, geofisical data) [write file].
- 9. Untuk membaca nilai konsentrasi klorofil-a/SPL, terlebih dahulu di save dalam bentuk data ASCII. Data ini kemudian diolah dengan *Microsoft Office Excel*. Cara menyimpan nilai citra dalam format data ASCII adalah dengan memilih "function \rightarrow **Output** \rightarrow **Data** \rightarrow **ASCII**. Masukkan nama file sesuai yang diinginkan.

b) Langkah-langkah Pengolahan Data dengan *Microsoft Office Excel 2007* (Setelah Pengolahan dari Linux Ubuntu)

Data di save setiap bulannya selama 5 tahun dari 2010-2014. Hasil dibuka dalam tampilan ms.excel, kemudian disortir sesuai dengan range yang dibutuhkan

Contraction and an end of the second second	The same interest of the same same same same same same same sam		and the second second
t must place relation	A find to build the state of the A former & State	and a franker of the marker franker of the	41. 24
		with the second s	41-39/
Hit Lastheret (Brank), Udarah (B. 4. years)	present of the set of	and the second	Coloregy 1
the parameters of the second s	num - interesting - interestin	Al - C - Al Interfer	14
THE CONSTRUCTION AND CONSTRUCTION AND ADDRESS OF			
	All	a balline balline theread the ball of a ball	
Contraction of the second second second second	 a.075 MID-540 B 108 	2000 and 200 a	
	 6.002 SIR-6AX 0.000 	2 - 2.0028 SDD.307 (100.0728	
	N COL BOOLEY PARA	• -0.001 000 000 -0000	
	B. MOT COMMAN OF LAS	annual terr terr	
	 4.937 005.034 0.137 	The state state state	
	5 + 075 b00.045 0.549	A AND DEC TE D	
		And Annual Annua	
e	54 5-500 DELEMA D.C.	appendix constant	
	AL 0.477 000.015 (0.109	10 -3-048 100-077	
	100 0 000 0 000 0 000 0 0 0 0 0 0 0 0 0		
		and a second sec	
	230.257 200.300 0.207	ar was set and the control of the co	14
	14 (4.15) 10% 1/8 (5.18)	and average second contract co	
		2012 002.747 P00000 P00000	
	A 5.70 LW.518 9.29	3.021 103.808 2407/08	
	24	and second the second s	
		-1.000 000 000 000 000 000 000 000 000 00	1.
Electron and a second s	C	The second secon	
sea and control a service	The second property amongs of a second party of the second party o	The second	

- 1. Data setiap bulan digabung untuk mencari nilai rata-rata setiap tahunnya. Tambahkan komponen yang mendukung data ,save dalam excel dan *.txt untuk kemudian diolah menggunakan ODV.
- 2. Data hasil pengolahan dari *Microsoft Office Excel 2007* diolah kembali dengan menggunakan *software Ocean data View (ODV) 4.1* untuk memperoleh peta sebaran klorofil-a dan SPL beserta garis konturnya secara spasial. Buka aplikasi ODV. Klik menu [file], [new], lalu ketikkan nama untuk file tersebut, [save]

3. Klik [OK] pada tab Collection Variables, pilih variable yang digunakan,[OK] Setelah keluar tampilan peta dunia, klik kanan, pilih [Display Option]. Pilih tab [domain], masukkan koordinat lokasi penelitian, [OK]

Harden Marker Harden Marker Salver Mark als al salver	The second	Same Charles Christer	Marine (According -)
Auto Zoum Gut	Conta:	Analy Userman	
Put Domain District Mass			tartifica.
Categories. Craesie	shiers 1		
Laboratoria Advertation	and the second s	accesso [100-	arrenary [\$15.
Live serve puscessory		and the second second second	
 Garrier Eternicies faires Garters de Contes de Herrice			lation () of
LATIN			
100 45			() () ()

4. Klik menu [Import], [ODV Spreadsheet], pilih file yang akan diolah, [open], klik variabel yang sama [associete], [OK]

Caller State	(Martin Dama
	La Commentation

5. Klik kanan pada tampilan gambar [Display Option], pilih [VG griding], naikkan nilai x dan y scale, klik [properties] masukkan range nilai data dan pilih [draw contour], [OK]

6. Untuk penyimpanan pilih menu [file], [save canvas as], ketikkan nama penyimpanan,pilih output *.gif, save. Hasilnya seperti tampilan gambar berikut:

c) Langkah-langkah Pembuatan Peta DPI Potensial Menggunakan *Software* ArcGIS 10.1.

- 1. Buka Software ArcGIS melalui Start| ArcGIS| ArcMap
- 2. Masukkan citra MODIS yang sudah diolah dengan SeaDAS ke dalam ArcMap melalui menu File| Add Data...
- 3. Add data dengan mencari lokasi citra tersebut (ambil citra yang bertuliskanchlor_a.img). Maka akan muncul notifikasi pada ArcGIS dengan tulisan, "Create Pyramids for chlor_a.img". pilih Yes. Setelah muncul citranya, klik Kanan pada layer chlor_a.img pilih Properties..

4. Langkah berikutnya adalah melakukan pengaturan pada citra tersebut untuk mempermudah dalam pengolahan dengan aturan pada layer properties sebagai berikut: Symbology, Show : Stretched, Stretch Type : Minimum – Maximum, (Statistic.........: Yes), Value : Edit High/ Low Value (*check*) Masukkan angka 1 untuk *High label* dan angka 0.2 untuk *low label*, Color Ramp : Optional

stor Chald	Arrestore Contract Stranger Contract		Test)	70 649 12
arrie Cons	Baller I Baller Frederic Stationer To	1 1000 - 1.5	Catholica	
1000 M	The second	1 7	ang () () Arreading the states of () ()	2
States of the second	The second research and second		Suil Incoment	

- 5. Kemudian lakukan hal yang sama seperti langkah ke 2 5 untuk citra yang bertandakan CM_A2016137055000.L2_LAC_SST.tif
- 6. Lakukan penganturan layer properties seperti pada langkah 6 akan tetapi untuk **tipe value**, digantikan dengan angka **35 untuk High label** dan angka **20 untuk Low label**.
- Kemudian lakukan pengelompokan pixel pada citra klorofil-a yang memiliki nilai 0,2 – 1 mg/m³dengan menggunakan Raster Calculator..... di Spasial Analyst Tools.
- Double klik pada Layer yang memiliki informasi klorofil-a dan tuliskan pada kotak calculatornya seperti pada gambar dibawah: ("chlor_a.img" >= 0.2) & ("chlor_a.img" <= 1), Setelah itu klik OK.

Layers and variables Conditional Conditional CM_A3316137058000.L2_LAC_BF 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 1 9 1 1 9 1	Map Algebra expression												
	CM_A2016137055000.L2_LA	с_яя				0 0 3		*	•== >==	 Conditio Con Pisk SetNull Math Aks	nal	^	
< > 0 . + () - Exp10 ~	<	>		0			+	 C	2	 Exp10		Ingel	

- Maka akan Muncul layer calculation dengan informasi 0 untuk data yang tidak termasuk range 0,2 – 1 mg/m³ dan informasi 1 untuk data yang telah diseleksi. Langkah Selanjutnya adalah pembuatan FishNet, dengan cara mengetikkan FishNet pada jendela search.
- 10. Pilih tempat penyimpanan dan nama file fishnet pada *Output Feature Class*. Kemudian atur batas fishnet dengan cara input nilai batas *Top*, *Bottom*, *Left* dan *Right* secara manual, atau dengan memasukkan *Template Extent*.
- 11. Atur Cell Size Width dan Height sesuai kebutuhan (sebagai contoh masukkan nilai 9000). Atur pula Number of Rows dan Collumns (sebagai contoh masukkan nilai 60

dan 120) Unchek pada *Create Label Properties* dan pilih *polygon* pada *Geometry Type*. Atur warna Layernya dengan mengganti menjadi Hollow.

- 12. Klik kanan pada layer Grid pilih Selection Make This The Only Selectable Layer. Setelah itu uncheck pada layer calculation kemudian fokuskan pada layer untuk SST, gunakan Select Features untuk menandai lokasi terjadinya *front* (Di indikasikan adanya suhu rendah disekeliling suhu tinggi dengan nilai fluktuasi 0,5^o C)
- 13.Setelah Melakukan identifikasi Upwelling kemudian *check* pada Layer **Calculation** dan lakukan identifikasi klorofil-*a* dengan melihat nilai **1** pada layer Calculation. Apabila Indikasi lokasi upwelling yang telah diseleksi tertutup dengan layer Calculation no **1** maka daerah tersebut digunakan untuk PFG apabila tidak, lakukan **Unselect Features**.

14. Contoh identifikasi front dengan menganalisis selisih nilai pixel yang bersebelahan dengan selisih value ≥ 0.5 .

15.Simpan **shapefilegrid** yang terseleksi dengan cara klik kanan pada Layer Grid Properties| Data| **Export Data**| Export: *Selected Features* pilih output data penyimpanannya (letakkan pada Folder yang berbeda dengan membuat folder baru "**PPDPI**". Berikut Contoh hasil PFG

Lampiran 13. Prosedur Analisis Klorofil-a di Laboratorium

- Air contoh yang akan diperiksa sebanyak lebih kurang 2000 ml, tempatkan di dalam botol yang tidak tembus cahaya dan selama perjalanan menuju laboratorium tidak terjadi proses fotosintesis. Air contoh disaring dengan kertas filter (*fibre glass filter atau cellulose filter*) dengan pori 0,45 - 0.80 μm; sampai air contoh tidak dapat lagi lolos. Misalkan air contoh yang tersaring = 50 ml, maka kita catat V=50 ml.
- 2. Mempercepat waktu penyaringan, botol penampung air yang lolos dari kertas filter dihubungkan dengan pompa penghisap sehingga botol tersebut hampa udara, yang membuat proses penyaringan lebih cepat. Kertas saring yang penuh dengan fitoplankton ambil dengan menggunakan pinset. Simpan sampel tersebut kedalam *freezer* (bila mungkin selama 24 jam).
- 3. Larutan 10 ml aseton 80 % (80 gr aseton + 20 gr akuades) tuangkan ke dalam tabung yang berisi kertas filter diatas. Catat 10 ml aseton tersebut sebagai V = 10 ml. Pemberian aseton juga dimaksudkan untuk menyempurnakan pemecahan sel-sel fitoplankton, agar seluruh pigmen klorofil-a terlarut menyebar didalam larutan aceton serta terlepas dari kertas filter. Apabila kertas *filter* yang digunakan adalah dari bahan selulosa maka ia akan hancur (larut) didalam aceton, namun bila bahannya dari *fibre glass* maka ia tetap utuh, dan perlu menghancurkannya dengan menggerusnya dengan menggunakan tongkat kaca sampai menjadi halus.
- 4. Pengukuran klorofil-a kita memerlukan ekstraksi (cairan) yang bening, yang bebas dari partikel lumpur maupun sisa-sisa kertas saringan yang digerus tadi. Mendonorkan ekstraksi yang bening tersebut, maka sampel tersebut perlu disentrifugasi dengan kecepatan 3000 hingga 4500 rpm selama lebih kurang 60 menit. Setelah disentrifugasi, maka cairan yang bening yang berada diatas endonan, dengan hati-hati kita tuangkan kedalam *tube* lain yang berisi, dengan demikian kita telah mendapatkan ekstraksi klorofil yang siap diukur.
- 5. Metode yang kita gunakan adalah metode spektrofotometer, maka sebelum melarutkan pengukuran, kita siapkan dan yakin bahwa spektrofotometer yang kita gunakan dapat bekerja dengan baik, jarum penunjuk absorbansi betul-betul menunjukkan keangka 0 (nol). 3 *tube* reaksi yang bersih, yang dipakai untuk:

(1) sebagai tube blanko yang berisi aceton 80%, (2) *tube* untuk ekstraksi klorofil-a, dan (3) larutan HCL. Tabung-tabung kupet harus selalu bersih dan setiap pergantian perlakuan pengukuran harus dibilas dengan aquades dan dilap yang bersih.

- 6. Blanko yang berisi aseton 80% dimasuk ke dalam tabung kupet sampai batas yang diperkenankan, letakkan kedalam celah kupet. Atur jarum panjang gelombang (*wave length*) menunjuk pada angka 605 nm, dan bersamaan dengan itu atur jarum absorbansi menunjuk ke angka 0. Tabung kupet yang lain dimasukkan dengan ekstraksi klorofil-a, angkat kupet blanko gantikan dengan kupet yang berisi ekstraksi klorofi-a tersebut, dan bacalah jarum absorbansi, selanjutnya teteskan HCL kedalam kupet ekstraksi ini sebanyak 2 tetes, lalu masukkan kembali kedalam celah kupet, dan catat jarum absorbansi.
- 7. Hasil pencatatan jarum absorbansi ketika pengukuran ekstraksi murni, dengan panjang gelombang 665 kita beri simbol sebagai E⁰₆₆₅ dan setelah diberi HCL kita catat sebagai E⁺₆₆₅. Pengukuran dilanjutkan dengan prosedur seperti diatas, namun jarum panjang gelombang diatur menunjuk ke angka 750 nm, sehingga akhirnya kita memperoleh E⁰₇₅₀ dan E⁺₇₅₀. Selanjutnya, nilai-nilai E⁰, E⁺, volume air contoh orisinal yang difilter (V), panjang kupet (L), dan volume aseton yang dipergunakan untuk melarutkan klorofil-a (r).

DAFTAR RIWAYAT HIDUP

Penulis dilahirkan di Aceh, 10 Juli 1987 dari pasangan Bapak Ahmad Cut dan Ibu Rafi'ah. Penulis Merupakan anak keenam dari tujuh bersaudara. Pendidikan formal penulis dimulai dari SD Negeri Damai, Kabupaten Pidie. SLTP Negeri 2 Indra Jaya, Kabupaten Pidie. dan SUPM Negeri Ladong pada jurusan Teknologi Penangkapan Ikan lulus tahun 2006. Pada tahun 2007, penulis diterima sebagai PNS pada Direktorat Jenderal Pengawasan dan Pengendalian Sumberdaya Kelautan

Dan Perikanan, Departemen Kelautan dan Perikanan, melalui jalur sekolah kedinasan lingkup Departemen Kelautan dan Perikanan.

Pada tahun 2010 penulis memperoleh izin belajar untuk melanjutkan pendidikan di Universitas Bangka Belitung pada Jurusan Manajemen Sumberdaya Perairan dan mengambil peminatan Ilmu Kelautan, Fakultas Pertanian, Perikanan dan Biologi. Selama menjalani pendidikan di Universitas Bangka Belitung penulis aktif dibeberapa organisasi internal kampus diantaranya: Anggota Pinguin Diving Club (PDC) dan menjadi anggota Himpunan Mahasiswa S1 Perikanan (HIMSAPERI). Sebagai tugas akhir penulis melakukan penelitian dengan judul "Pendugaan Daerah Penangkapan Ikan Tenggiri Berdasarkan Distribusi Suhu Permukaan Laut dan Klorofil-a Di Perairan Bangka" dan dinyatakan lulus pada tahun 2017.