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STRACT

Aim Large trees (db.h.=70cm) store large amounts of biomass. Several
studies suggest that large trees may be vulnerable to changing climate, po
tially leading to declining forest biomass storage. Here we determine the
importance of large trees for tropical forest biomass storage and explore which
insic (species trait) and extrinsic (environment) variables are associated with
the density of large trees and forest biomass at continental and pan-tropical

scales.
Location Pan-tropical.

Methods Aboveground biomass (AGB) was calculated for 120 intact lowland
moist forest locations. Linear regression was used to calculate variation in AGB
explained by the density of large trees. Akaike information criterion weights ( AICc-
wi) were used to calculate averaged correlation coefficients for all possible multiple
regression models between AGB/density of large trees and environmental and
species trwariables correcting for spatial autocorrelation.

Results Density of large trees explained ¢. 70% of the variation in pan-tropical
AGB and was also responsible for significantly lower AGB in Neotropical [287fel5
(mean) * 105.0 (SD) Mg ha™'] versus Palaeotropical forests (Africa 418.3 = 91.8
Mg ha™'; Asia 393.3 = 109.3 Mg ha''). Pan-tropical variation in density of large
trees and AGB was associated with soil coarseness (negative),soil fertility (positive),
community wood density (positive) and dominance of wind dispersed ies
(positive), temperature in the coldest month (negative), temperature in the
warmest month (negative) and rainfall in the wettest month (positive), but results
were not always consistent among continents.

Main conclusions Density of large trees and AGB were significantly associated
with climatic va es, indicating that climate change will affect tropical forest
biomass storage.@cies trait composition will inte ith these future biomass
changes as they are amffected by a warmer climate?ﬂ
trees for variation in AGB across the tropics, and their sensitivity to climate change,

ven the importance of large

we emphasize the need for in-depth analyses of the community dynamies of large
trees.
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INTRODUCTION

Large trees have recently started to attract the attention of biolo-
gists because they are becoming increasingly rare due to their
assodiation with globally
(Lindenmayer et al., 2012). Large, ‘old’ trees are keystone com-

ing areas of pristine habitat

ponents of forest ecosystems, providing nesting and sheltering
cavities, creating distinct microenvironments, playing crucial
oles in hydrological regimes and provig food for many
animal species (Lindenmayer et al., 2012). Large trees also store
large quantities of carbon to their high wood volumes.
Noting the disproportionate contribution of large trees to stand
level aboveground biomass (AGB), Paoli eral. (2008) drew
attention to the much higher density of large trees in Southeast
Asia than the Neotropics as a possible explanation for the
observed differences in AGB between these two regions. Differ-
ences in AGB ar eed closely linked to local and regional
differences in the density of large trees (DeWalt & Chave, 2004;

li et al., 2008; Rutishauser et al., 2010; Slik et al., 2010}, and
such trees could thus be responsible for a large portion of global
to evaluate how

explained by the

variation in AGB. Our first aim, therefore,
much of the global variation in AGB can
density of large trees.

Our second aim to identify the potential drivers of
observed differences in the density of large trees and variation in
AGB across the tropics. Can these be explained by environmen-
tal conditions, such as climate and soils, or are species traits
involved as well? Climate and soils have been sho
cated with the density of large trees and AGB at local and
nal spatial scales, suggesting a potential role at al scales

(Laurance et al., 1999; Clark & Clark, 2000; Chave et al., 2004;

€ ass0-

DeWalt & Chave, 2004; etal., 2006; Paoli et al., 2008;
Ferry et al., 2010; Slik et al., 2010; Baraloto et al,, 2011; Quesada
et al., 2012). For example, prolonged droughts can dispropor-
tionately incr he mortality of large trees (Slik,
Nieuwstadt & Sheil, 2005; Phillips et al., 2009), resulting in a
lower density of large trees and AGB, while very poor, water-
logged or shallow soils can lead to stunted tree growth, sup-
pressed maximum tree size, higher tree tes, reduced
density of large trees and lowered AGB (Paoli et al., 2008; Ferry
et al., 2010; Slik et al., 2010; Baraloto et al., 2011).

Species traits related to maximum tree size might also iy a
role in explaining large-scale variation in AGB (Nelson et al.,
1999; DeWalt & Chave, 2004; Chave et al., Paoli et al.,
2008; Rutishauser et al,, 2010; Slik et al., 2010; Feldpausch et al.,
2011). To test this we selected three traits, wood density, wind
dispersal syndrome and ectomycorrhizal (ECMERssociations,
that can be hypothesized to affect AGB and/or the density of
large trees. Slik et al. (2010}, for example, showed that within the
Asian equatorial tropics wind dispersed tree species were typi-
cally larger than non-wind dispersed species and that domi-
nance of wind dispersed species was positively correlated with
AGB. Wood density has been shown to affect AGB patterns in
the Neotropics (Baker et al., 2004b), and also correlates posi-
tively with drought survival of large trees (Slik, 2004;
Nieuwstadt & Sheil, 2005). ECM associations have frequently
been found in association with (mono-)dominance of large tree
species, possibly due to increased efficiency of nutrient acquisi-
tion in low-fertility soils, leading to higher growth and survival
rates (Torti et al., 2001; McGuire, 2007).

Here we use a pan-tropical tree inventory data set from 120
old-growth lowland tropical moist forest locations (33 in South
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America, 45 in Africa, 42 in Southeast Asia) containing 192,308
stems (= 10 cm stem diameter) to address the above-mentioned
topics at continental and pan-tropical scales.

MATERIAL AND METHODS

Pan-tropical AGB data

We used tree inventories from old-growth (undisturbed) moist
(mean annual rainfall 1500-3500 mm, number of months were
evaporation exceeds rainfall fZ# lowland (below 600 m eleva-
tion) forests that included all trees with a d.b.h. = 10 cm and for
which the exact location (latitude and longitude) and plot size
were known. Some of the inventory data came from forest plot
networks (see Acknowledgements for more information). Since
we used a 10 km x 10 km raster for our environmental data
(climate and soils), all plots that fell within a 10 km x 10 km
environmental grid cell were combined and treated as a single
observation (location), i.e. all individuals within the grid cell
were pooled. Only grid cells that contained at least 1 ha of tree
inventories were included in the study, resulting in a total of 120
sample locations (Fig. 1, Appendix S in Supporting Informa-
tion), 33 in America, 45 in Africa and 42 in Asia. For each of
these we calculated the AGB by dividing the sum of all indi-
vidual tree AGBs by the total surface area of the plots. For the
AGB calculation we used the pan-tropical moist forest AGB
equation given in Feldpausch etal. (2012) which is based on
the same, but expanded, data
from across the tropics as used for the Chave et al. (2005) pan-
tropical AGB moist forest equation. Tree diameter-height rela-
tionships differ significantly I:@en tropical regions, which can
seriously affect regional AGB estimates (Feldpausch et al., 2011,
2012; Banin et al., 2012). Since most of our tree inventories
lacked precisely measured tree heights, we used the regional
Weibull height models given in Feldpausch et al. (2012} to esti-
mate tree heights. The observed tree diameters and estimated

destructively sampled trees

tree heights were subsequently used as input es in the
AGB allometric equation mentioned above. Wood density
values for the tree 5, which are another input variable in
this AGB equation, were taken fro Global Wood Density
Database (Chave et al., 2009; Zanne et al., 2009). If species were
not present in this list the genus-level average to esti-

ave et al., 2006; Slik, 2006). For uni-

mate the species value (

1
Figure 1 S.paﬁal distribution of the
study sites (black dots). Due to the size
of the dots they can encompass more
than one location. The total number of
locations is: South America 33, Africa 45,
Southeast Asia 42. The extent of global
moist tropical forests is indicated by grey
shading.

Large trees and tropical forest biomass

dentified species, or species identified to family level only, we
used the average wood density value of the plot in which they

were found.

Tree species traits

species trait data were collated from literature sources, iLe.
wood density from the Global Wood Density Database (Chave
etal., 2009; Zanne etal, 2009), ECM associations from
Brundrett (2009) and wind dispersal from local floras and
le image’ by checking spedies fruit and seed morphology.
r each location we then calculated the basal area weighted
mean community value of wood density (WD) and biomass
weighted percentage ECM associations and percentage wind
dispersal. Wood density was weighted by basal area instead of
biomass because wood density is used to calculate biomass,
making these two variables dependent on each other.

Climate and soil data

We download climate variables from the WORLDCLIM
database (http://www.worldclim.org) and 15 soil variables from
the FAO database for poverty and insecurity mapping for each
of the 12%-::1&0115 using a c. 10 km % 10 km resolution (for a
complete ition of each variable see Appendix 52, FAO, 2002
and Hijmans et al., 2005). To reduce the number and collinear-
ity of variables we ran ﬂ:ipal components analysis (PCA)
(Multivariate Statistics ge MVSP, version 3.2, Kovach
Computing Services, Anglesey, UK) for both the climate and soil
data with the 120 locations as cases. We retained only PCA axes
that explained at least 10% of data variability, resulting in three
climate and four soil axes (Appendix 53). The three climate and
four soil axes explained 85.1% and 74.4% of data variability,
respectively. For the climate PCA axes we then selected one
variable that made ecological sense in relation to AGB and tree
density, was highly correlated with the concerned PCA axis, and
was correlated as little as possible with the other PCA axes. This
lted in the following included dimatic and soil variables: (1)
minimum temperature of the coldest mont] ich was closely
associated with temperature seasonality; (2) maximum tempera-
ture of the warmest month, which was dosely associated with

mean annual temperature; (3) rainfall in the wettest month,
which was closely assodated with annual rainfall; (4) seil PCA

axis 1, which was negatively associated with soil organic carbon

Global Ecology and Biogeography, e+, se—se © 2013 John Wiley & Sons Ltd 3
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Table 1 Mean aboveground biomass (AGB) (=SD) values (all trees, small trees and big trees) of South Americai glefican and Asian moist
tropical forests below 600 m elevation. Significant differences (P < 0.05) in AGB between regions were tested with one-way ANOVA
followed by Bonferroni post hoc tests or Kruskal-Wallis (KW) followed by Mann—-Whitney post hoc tests (if data transformation could not
correct for differences in data variance between regions) and are indicated by different superscript characters (A, B) in each column.

@5mu]l trees

AGB big trees

Region AGB all trees (Mg ha™') (d.bh. <70 cm) (Mg ha™") (d.bh. =70 cm) (Mg ha™) Sample size ()
America 287.8 + 105.0° 215.7 * 67.5 72.2 * 629" 33

Asia 3933 + 109.3" 239.4 = 58.6 153.9 + 87.8" 42

Africa 4183 + 91.8° 222.9 + 37.9 186.2 = 79.8% 45

n 120 120 120

Test statistic 17.0 (ANOVA) 33 (KW) 36.5 (KW)

P < 0.0001 n.s. < 0.0001

n.s., not significant.

content; (5) soil PCA axis 2, which was positively associated
with soil water availability and storage; (6) soil PCA axis 3,
which was positively associated with soil coarseness; (7) soil PCA
axis 4, which was positively associated with available nutrients
and pH.

Statistical analyses

Differences in AGB, density of large trees and other variables
between tropical America, Africa and Asia were tested using
ANOVA followed by Bonferroni post hoc tests when data vari-
ances were equal and data normally distributed. If the data
vari remained unequal, even after data transformation, we
uskall-Wallis followed by pair-wise Mann—Whitney post
hoc tests. The appropriate boundary for differentiating small
and large trees was detected using cumulative addition of AGB

used

stored in 10 cm diameter classes, performing an ANOVA test
‘fipken the three main tropical regions at each cumulative step
to test for significant differences in AGB between regions. This
analysis showed that the three tropical regions had similar
cumulative AGB values up to a diameter of 70 cm, but signifi-
cantly differed at all higher cumulative AGB values ( Table 1). We
therefore chose 70 ¢ he threshold to differentiate between
small and large trees. A linear regression was performed st
the strength of the relationship between large tree (db.h.
>=70 cm) density and AGB.

To determine the contribution of species trait, climate and
soil variables to regional and global variation in density of large
trees and AGB, we computed ordinary least square {(OLS) linear
multiple regression models based on each possible combination
of variables (lﬂq::ssible models for 10 variables) using the
freely available software ‘Spatial Analysis for Macroecology’
(SAM), version 4.0 (Rangel et al., 2010). Before we performed
the OLS analyses we first tested whether regressions between the
response variables and the individual predictor variables were
linear and conformed to regression analysis assumptions. Our
aim was not to find the single best predictive model for the
response variables, but to explore the strengtffpfid direction of
the predictor variables across all models using a model averaging

approach based on the e information criterion weight
(AICc-wi). The AICc-wi represents the likelihood of a given
model relative to all other models and thus varies between zero
and one (Wagenmakers & Farrell, 2004), with the model with
the | Cc having the highest AICc-wi. All model param-
eters were averaged across the 1023 models, weighted by
AlCc-wi. A one-tailed t-test was used to determine whether the
variation in regression coeffidents observed for each variable
7B ss all models differed significantly from zero. Additionally
we calculated the importance value of each pred
The importance value of a predictor variable is calculated by
simply adding the AICc-wi values of the models in which the
variable was present, i.e. if variables were present we most
likely models they will have high importance values. Imp

variable.

ortance
values vary between zero (low importance) and one (high
impome).

To account for spatial autocorrelation in our O| odels we
used eigenvector-based spatial filtering (SEVM) as applied in
SAM wersion 4.0. This method extracts spatial filters using
the principal components of neighbour matrices (PCNM)
(Brocard & Legendre, 2002). We retained only spatial filters
that reduced spatial autocorrelation with the response variable
(as based on Moran’s I values) and which alone or combined
showed the lowest AICc value when regressed against the
response variable. These spatial filters were subsequently added
as fixed (Le. present in all 1023 multiple regressions) predictive
variables in the same model selection procedure as described
above to see how this would affect the direction, strength
and significance of the regression coefficients produced by the
OLS regressions without spatial filters. In all but one case
adding spatial filters improved the models (lower AICc values).
Since the spatially corrected models are also statistically more
appropriate we use the spatial models in the remainder of
this paper (original OLS results can be found in Appendices $4
& S5).

All analyses, unless mentioned otherwise, were performed
using the statistical software package Statgraphics Plus for
Windows version 2.1 (Statpoint Technologies, Warrenton, VA,
USA).
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Figure 2 Relationship between density of large trees

(d.b.h. = 70 em) and aboveground biomass. South American sites
indicated by open circles; African sites by grey circles; Asian sites
by black circles. The fitted line explains 69.8% of data variance.

RESULTS

Estimated AGB was significantly lower in South America
(287.8 = 1050 (mean = SD) Mg ha'] than in [Ra
(418.3 £ 91.8 Mg ha™) and Southeast Asia (393.3 = 109.3 Mg
ha™) (Table 1). No difference in AGB was detected between the
three tropical regions when only trees up to 70 cm diameter
were included in the AGB calculations, i.e. the difference in
AGB was caused by the AGB stored in the largest trees
(d.b.h. = 70 cm) (Table 1). The lower AGB in South American
forests corresponded to a significantly lower density of large
trees there (density of trees with dbh. =70 cm in South
America 7.5 *+ 5.3 trees ha ', in Southeast Asia 13.4 + 6.7 trees
ha™, in Africa 15.8 + 5.4 trees ha™'; ANOVA test n =120,
dfi=2, F=20.8, P<0.0001). Overall, large tree density
(d.b.h. = 70 cm) accounted for 69.8% of pan-tropical variation
in AGB (Fig. 2; linear regression results: correlation coeffi-
cient=0.835, R* = 0.698, F=272.6,n = 120, P <0.0001).

The three tropical forest regions differed significantly in
species trait values, climate variables and soil variables, with the
exception of maximum rainfall of the wettest month and soil
PCA axis 3 (soil texture) (Table 2). Distinctive characteristics of
the South American locations included relatively high wood
density, low dominance of ECM and wind dispersed trees, high
maximum temperatures and high soil moisture storage com-
bined with poor soils. Distinctive characteristics of the Asian
locations included the relatively low wood density, high domi-
nance of ECM and wind dispersed trees, low maximum tem-
peratures combined with high minimum temperatures, high
soil organic carbon, low soil water storage but high soil fertilit}'.
Distinctive characteristics of the African locations included the
relatively high wood density, low minimum temperature and
low soil organic carbon.

At global scales, soil variables had low to intermediate impor-
tance values as predictors for both the density of large trees and
AGB,although this differed between continents ( Tables 3 &4). At
the global scale, soil fertility was the most important variable,
being positively correlated with both the density of large trees and

Large trees and tropical forest biomass

AGB; however, this relationship was negative in Africa. Soil
coarseness and moisture storage were less important for the
density of large trees and AGB at the global scale, both decreasing
with soil coarseness and moisture storage, but considerable dif-
ferences existed in the strength and direction of correlation for
these variables among the three continents (Tables 3 & 4). Soil
carbon content was the least important soil variable at the global
scale, showing no relationship with the density of large trees and
a negative relationship with AGB. However, in Africa it was a
strong positive correlate for the density of large trees, while in
South America it was a positive correlate for AGB (Tables 3 & 4).

Species traits were strongly correlated with the density of
large trees and AGB at the global and continental scales, both
generally increasing with community average wood density
(except Asia), ECM associations (except for AGB at global scale
and Africa) and dominance of wind dispersed tree species
(Tables 3 & 4). These patterns were fairly consisler@lhin the
continents, with the exception of Asia where the relationship
between community average wood density and density of large
trees was negative while being non-significant for AGB; and the
non significant assodation of ECM associations with AGB in
Africa and the global scale (Tables 3 & 4).

Rainfall had very high im
was positively correlated with the density of large trees and AGB
at the global scale. With the exception of South America this
pattern was the same in most conffizhts (Tables 3 & 4). Of the

nce as a cimate variable and

temperature variables, maximum terfg¥:lature in the warmest
month was the most important, being negatively correlated with
the density of large trees and AGB at the global scale, but these
results varied considerably between continents 38 B & 4).
The minimum temperature of the coldest month was negatively
correlated with density of large trees and AGB at the global
scale, but again varied considerably between continents
(Tables 3 & 4).

Overall, the predictive models explained considerable
amounts of variation in AGB and the density of large trees, with
the exception of Asia, where explained variation in AGB was low
(Tables 3 & 4).

DISCUSSION

Big trees as drivers of variation in AGB

Big trees accounted for more than two-thirds of sample-based
pan-tropical variation in AGB, and when the three main tropical
regions were compared directly they were the sole cause of the
detected AGB difference between Neotropical and Palaeotropi-
cal forests. The impact of big trees on AGB also follows from the
fact that they stored on average 25.1, 39.1 and 44.5% of AGB in
South America, Southeast Asia and Afri spectively, but rep-
resented only 1.5,2.4 and 3.8% of s larger than 10 cm d.b.h.
in these three respective regions. Any impacts on large trees,
either by global change or other disturbances that ct the
abundance and persistence of these large stems, is therefore
likely to have a major impact on forest AGB.

Global Ecology and Biogeography, e+, ss—+e, © 2013 John Wiley & Sons Ltd 5
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Table 2 Comparison of species traits

regions in each row are indicated with different superscript characters (A, B).

ate and soil variables (mean * 5D) in the sample locations partitioned by the three main
tropical regions. All tests are based on Kruskal-Wallis followed by Mann—Whitney post-hoc comparisons. Significant differences between

America (n=33) Asia (n=42) Africa (n=45) Test statistic P-level

Wood density (g cm™) 0.650 = 0.08° 0.593 = 0.03* 0.647 + 0.04% 339 < 0.0001
ECM (% of AGB) 2.31 = 0.07* 4021 = 0.18° 9.77 = 0.10% 71.2 < 0.0001
Wind disp. (% of AGB) 10,62 = 0.06" 4595 = 0.16° 19.39 = 0.11" 68.0 < 0.0001
Max. temp. (°C) 2.4 = 7.3° 306 = 115" 313+ 115" 51.7 < 0.0001
Min. temp. (°C) 19.8 = 22.9* 21.0 = 24.9* 183 = 10.8° 45.2 < 0.0001
Max. rain (mm month™) 339.5  74.2 327.7 + 54.3 3127 + 76.4 13 NS

Soil PCA 1 (carbon) —0.037 + 0.12348 —0.084 + 0,195 0.106 = 0.174" 20.7 < 0.0001
Soil PCA 2 (moisture) 0.091 + 0.138% —0.075 = 0.170* 0.003 = 0.135" 18.1 < 0.0001
Soil PCA 3 (coarseness) —0.046 = 0072 0.035 = 0.174 0.001 = 0.125 38 NS

Soil PCA 4 (fertility) —0.045 = 0.106" 0.058 = 0.124" —0.021 = 0.102* 18.5 < 0.0001

AGB, aboveground biomass; wg derﬂ, basal area weighted community wood density; ECM, ectomycorrhizal associations; Wind disp., trees with
wind dispersal syndrome; Max. temp., temperature of the warmest month; Min. temp., temperature of the coldest month; Max. rain, rainfall in the

wettest month; carbon, soil carbon content; moisture, soil moisture content; coarseness, soil particle size; fertdity, soil ferulity.

Table 3 The standardized regression coefficients for each predictor variable, with their importance value indicated between brackets, for

density of large trees at global and continental scales as averaged over all 1023 possible models using AICc-wi (the Akiake information
criterion weight) as a weighting criterion. All models were run with spatial filters to correct for effects of spatial autocorrelation on
strength, direction and importance of regression coefficients.

Region Global Africa America Asia
Soil S1 (carbon) =0.020 (0.244) 0.923%* ) 0.037 0.194) 0.014 (0.185)
S2 (moisture) —0.134** (0.555) 0021 ) 0.023 0.229) —0.297** (0.751)
$3 {coarseness) 0127 (0.577) _0.546% ) 0,125 (0.200) 0,071 (0212)
S4 {fertility) 0212 (0.929) —0.802%* ) 0267 (0.363) 0.129%** (0.268)
Trait Wh 0127 (0.464) 0.299** ) 0.2224%* (0.328) —0.338** (0.845)
ECM 0122 (0.323) 0.194%%* ) 0.349** (0.785) 0,484 (0.794)
Wind 0483 (0.997) 0577+ ) 0,092 (0.203) 0.290%* (0.255)
Climate T min. —0.053%  (0.275) 0.377%% ) —0.016 0.194) —0.149%*  (0.247)
T max. —0.133" {0.466) —.3427%% ) 0.225%%* (0.387) —0.026 (0.195)
R omax. 0197 (0.924) 0.618* ) —0.032 0.180) 0,102 (0.232)
Space Filter 1 —0.541°** (1.000) —.518% ) 0476 (1.000) —0.316%  (1.000)
Filter 2 0134 (1.000)
Model AlCe 7432 273.2 21 288,
Rz-adjueilcd 0.414 0.482 (258 270
n 120 45 33 42
AGBE, abow und biomass; WD, basal area weighted community wood density; ECM, ectomycorrhizal associations; Wind, trees with wind dispersal
syndrome; T max., temperature of the warmest month; T min,, temperature of the coldest monfie¥® max., rainfall in the wettest month; carbon, soil

carbon content; moisture, soil moisture content; coarseness, soil particle size; fertility, soil fertility; AlCe, Akaike information criterion adjusted for small

sample size.

10

Significance levels for non-random deviation from zero of the regression coefficients are indicated as follows: *0.01 < P <0.05 **0.001 <P <0.01;

P = 0001,

Climate

One obvious change that will occur in tropical forests over the
next century will be an increase in temperature between 1 and
6°C (IPCC, 2007). Since tropical forests store considerable
amounts of terrestrial carbon (Saatchi et al., 2011) it is critical
to know how temperature relates to the density of large trees
and AGB across the tropics because this could indicate how

6

tropical forests will react to rising temperatures. Although our

global models show a clear negative correlation between tem-

perature of the warmest month and the density of large trees
and AGB, suggesting a loss of large trees and AGB with rising
temperatures, our results are rather mixed when analysed at the
continental scale. Of the three continents, only Africa shows a
clear negative correlation between temperature of the warmest
month and density of large trees and AGB. For the other con-
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Table 4 The standardized regression coefficients for each predictor variable, with their importance value indicated between brackets, for
AGB (aboveground biomass) at global and continental scales as averaged over all 1023 possible models using AICc-wi (Akaike information
criterion weight) as a weighting criterion. All models were run with spatial filters to correct for effects of spatial autocorrelation on

strength, direction and importance of regression coefficients.

Region Global Africa America Asia
Soil SI (carbon) —0.099%*  {0.410) —0.017 (0.209) 0.399%** ((.258) —0.107** (0.240)
S2 (moisture) —0.039%  (0.257) 0.009 (0.195) 0.077 (0.340) —0.056  (0.204)
S3 (coarseness) —0.062%" (0.309) —0.176%* (0.359) —0.406%** (0.273) 0108 (0.239)
S4 (fertdlity) 0.139%*  (0.676) —0.035*  (0.201) 0312 (0.796) 0.126* (0.265)
Trait W 04714 (1.000) 060044 (0.997) 0.445%%  (0.749) —0.049  (0.206)
ECM 0016 (0.234) —0.016 (0.179) 0.227** (0.805) 0.326%% (0.457)
Wind 0448 (0.998) 0631 (0.998) 0118 (0.226) 0358 (0.623)
Climate T min. —0.044%  (0.253) —0.052 (0.199) —0.009 (0.140) —0. 182 (0.304)
T max. —0.140%*  (0.541) —0.340%* (0.881) 0.021  (0.131) 0.144% (0.272)
@.\x 0.225%* (0.984) 0.338* (0.780) —0.031 (0.146) 0.314% (0.652)
Space iter 1 —0.268%  (1.000) 0.079 (1.000) —0.484%  (1.000) —0.293% (1.000)
Filter 2 =0.300%* (1.000) 0168 (1.000)
Filter 3 0056 (1.000) —0.127 (1.000)
Filter 4
Model AlCe 14129 531.8 376.0 5338
R*-adjusted 0482 A27 0.769 0.070
n 120 45 33 42

Significance levels for non-random deviation from zero of the regression coefficients are indicated as follows: *0.01 < P<0.05; **0.001 < P < 0.01;

P 0.001.

WD, basal area weighted community wood density; ECM, ectomycorrhizal associations; Wind, trees with wind dispersal syndrome; T max.,

temperature of the warmest month; T min., temperature of the coldest month; R ma
content; moisture, soil moisture content; coarseness, soil particle size; fertility, soil fertility;

sample size.

tinents the importance value for this variable was low, indicat-
ing that they were generally not selecte he best models and
showed either no or a positive impact on the density of large
trees and AGB. The African forest locations differed climato-
logically from those of the other two continents in that they
had the lowest annual rainfall and are therefore generally more
water limited when compared with forests in Asia and South
America. This may explain the strong negative association
between temperature of the warmest month and density of
large trees and AGB in Africa since water stress is an important
mortality factor for large tropical trees (Phillips et al., 2010),
especially since the water vapour pressure deficit experienced
by trees increases exponentially with increasing temperature
under low-humidity conditions (Boer etal., 2011). Overall,

rection
e density

of large trees and forest biomass will be affected by increasing

however, the ambiguity in response strength an

across continents makes it difficult to predict how

temperatures in the ff . So far tropical forests still seem to
r etal., 2004a; Lewis et al., 2009b),
possibly due to carbon fertilization associated with the
increased levels of atmospheric CO, (Lewis ef al., 2009a), but

act as carbon sinks (B

our analysis does partly indicate that this may change if tem-
peratures keep increasing.

Annual rainfall had a high importance value and positive
correlation with AGB and density of large trees, with the

nfall in the wettest month; carbon, soil carbon
, Akaike information criterion adjusted for small

exception of forests in South America which showed no
response. The rainfall effect was strongest in Africa, which, as
mentioned earlier, has the lowest annual rainfall levels of the
three tropical regions and therefore its s can be expected
to react strongly to rainfall levels. The 1mportance of annual
rainfall for AGB has been stressed by many studies (Chave
etal., 2004; Malhi et al., 2006; Slik et al., 2010; Baraloto et al.,
2011), and is probably related to hydraulic li
cially the largest trees (Lines efal., 2012). Large trees are
disproportionately sensitive to water stress (Slik, 2004;
Nieuwstadt & Sheil, 2005), because the water tension that

ns of espe-

develops between the tree roots and canopy can cause vessel
cavitation under warm and dry conditions {Hacke et al., 2001},
leading to lost water transport capacity and, if enough vessels
are affected, to tree death. Several studies have shown that
increase the mortal-
ity of large trees disproportionately (Nieuwstadt & Sheil, 2005;
Phillips et al., 2010}, resulting in derable declines of forest
AGB and density of large trees (Phillips efal., 2009). On the
other hand, a recent study from Ghana found that after a

extreme or prolonged droughts do 1

multidecadal dedline in rainfall, tree canopy species composi-
tion shifted towards heavier wooded tree species leading to an
overall increase in AGB (Fauset et al., 2012}, thus showing that
gradual decreases in rainfall may affect tropical forests differ-
ently from intense droughts.
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Soils

Our study finds relatively weak impact of soils on forest AGB
and density of large trees. A problem here is that although the
FAO soil data that we used are globally standardized and thus
good for comparison between regions, they are also rather
coarse and their loc@uraqr is poorly known but appears low
in forested regions (e.g. Ladd et al., 2013}, despite the fact that
extrapolation of soil variables in the FAO system is partly based
on the forest types themselves. Given the notorious variability of
soils over short distances, this low level of resolution could
obscure otherwise strong relationships if soil data were to have
been available for individual plots. Unfortunatel}’, such data
were not available for most sites included in our analysis. Good
quality data are clearly urgently needed.

Relationships between soils and lmp forests show rather
mixed and often conflicting results (Laurance etal., 1999;
DeWalt & Chave, 2004; Paoli et al., 2008; Ferry et al., 2010;
Quesada ef al., 2012). This is partly because every study uses
slightly different methodologies of sampling (sampling depth
and intensity), includes different nutrients and differs in
whether these represent available orfBfital amounts. However,
there seems to be a general pattern of increasensity of large
trees and AGB with increasing soil fertility in tropical forests
(Paoliet al., 2008; Quesada et al., 2012). Our study supports this
further by identifying soil fertility (in the foif 5§} of available
bases) as an important positive correlate of both density of large
trees and forest AGB at global scales and within South America
and at the continental scales. Africa formed an exception
with a strong negative correlation between soil fertility and
density of large trees, and to a lesser extent AGB. Shifting culti-
vation and migrations were very frequent in west central African
forests, where most of our plots are located, before populations

forced to settle by colonial and subsequent governments
(Van Gemerden et al., 2003; Brncic et al., 2007). We can assume
that populations cultivated on the richest soils and thus reduced
the number of tree stems. In these past cultivated areas, stands
are still dominated by light-demanding and wind-dispersed
species (Gillet & Doucet, 2012) while in the oldest forests shade
tolerant species dominate, most of them being Fabaceae, often
self-dispersed, gregarious, with ECM, forming large, low-
diversity stands with big trees.

Species traj

Community average wood density (weighted by basal area) and
dominance of wind dispersed tree species (weighted by
biomass) were strong positive correlates for the density of large
trees and AGB both globally and on most continents, while
dominance of species with ECM associations (weighted by
biomass) showed weaker, but generally also positive, correla-
tions with density of large trees and AGB. Possession of a wind
flrsal syndrome is positively associated with tree size in Asian
tropical fo (Slik et al., 2010), probably because the dispersal
distance of wind dispersed seeds depends directly on the height
from which seeds are released and exposure to wind flows

(Contreras-Sanchez et al.,, 2011). Our results show that the
dominance of wind dispersed specmn old-growth tropical
forests is a consistent indicator of a high density of large trees
and high f AGB across all tropical continents. What is
causing the dominance of wind dispersed tree species in high-
bio: forests remains unclear, but deserves further study. In
Asia most of the wind dispersed tree spedies are concentrated in
the Dipterocarpaceae, which are also characterized by ECM
associations. ECM associations increase nutrient availability to
tree species, which, especially on poor soils, may enable them to
outcompete other species with less efficient nutrient acquisition
through higher survival and growth rates, potentially leading
both to large tree size and a high density of large trees (Torti
et al., 2001; McGuire, 2007). It would be interesting to explore
whether wind dispersal and ECM associations are more gener-
ally associated, as this may be one of the mechanisms explaining
how wind dispersed tree species can become both dominant
and large. 33

Wood density was another species trait that was strongly and
positively correlated with the density of large trees and forest
AGB, although Asian forests formed an exception to this rule. It
should be noted, however, that there is a potential for artefactsin
this result given that wood density is also included in the allo-
metric equation used to calculate tree biomass. The two conti-
nents where wood density has a positive effect on forest AGB,
Africa and South America, are characterized by high average
wood density when compared with forests in Asia where no
effect of wood density on AGB was detected. The Asian forest
sites were among the coolest, wettest and least seasonal forests
included in this study, which may explain their relatively low
wood density, as high wood density is generally correlated with
hot and drought-prone regions, either with 1§¥Bnnual rainfall
or strong seasonal patterns in rainfall (Hacke et al., 2001; Malhi
et al., 2006, Maharjan et al., 2011). Also, the areas with the
highest community wood density in Asia were nutrient-poor
heath forests and peat swamp forests, both of which are charac-
terized by alow density of large trees and low to average levels of
AGB (Slik et al,, 2010).
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BIOSKETCH

Ferry Slik and co-authors work together with the
specific aim of combining local tree data sets into larger
regional and pan-tropical data sets so that large-scale
patterns in tropical tree diversity, composition,

traits and biomass can be studied. Such analyses

are important because they can elucidate the
biogeographical and environmental drivers behind
these patterns, and thus might also provide insight into
how global change will affect tropical tree communities.
Ferry Slik and co-workers will continue to work on
these questions and are currently expanding the data set
significantly.
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