Lampiran I *Coding* Arduino

#include <Wire.h> // library i2c
#include <LiquidCrystal_I2C.h>// library LCD
LiquidCrystal_I2C lcd (0x27, 16, 2);
#include <Adafruit_INA219.h> // library sensor daya
#include <TimerOne.h>
Adafruit_INA219 sensor219;

int button1 = 5; int button2 = 6; int button3 = 7;

int relay1 = 8; int relay2 = 9; int relay3 = 10;

int nilaibutton1 = 0; int nilaibutton2 = 0; int nilaibutton3 = 0;

int count1; int count2; int count3;

int LED1 = 11; int LED2 = 12; int LED3 = 13;

void setup () {

lcd.begin (); //lcd start
Serial.begin (9600); //inisiasi serial monitor
sensor219.begin (); //sensor power start

pinMode (button1, INPUT); pinMode (button2, INPUT); pinMode (button3, INPUT);

pinMode (relay1, OUTPUT);
pinMode (relay2, OUTPUT);
pinMode (relay3, OUTPUT);

pinMode (LED1, OUTPUT);
pinMode (LED2, OUTPUT);
pinMode(LED3, OUTPUT);

```
digitalWrite (relay1, HIGH);
digitalWrite (relay2, HIGH);
digitalWrite (relay3, HIGH);
```

}

void loop () {

float busVoltage = 0;
float current = 0; // Mengukur dalam mA
float power = 0;

busVoltage = sensor219.getBusVoltage_V(); current = sensor219.getCurrent_mA(); power = busVoltage * (current/1000); // menghitung daya lcd.setCursor (0,0); lcd.print (current/1000,2); lcd.setCursor (6,0); lcd.print ("Arus ; A");// perint

A'');// perintah menampilkan nilai Arus

lcd.setCursor (0,1); lcd.print (busVoltage); lcd.setCursor (6,1); lcd.print("Tegangan ; V");// perintah menampilkan nilai Tegangan delay (2000); // delay pemrosesan penampil LCD

nilaibutton1 = digitalRead (button1); nilaibutton2 = digitalRead (button2); nilaibutton3 = digitalRead (button3);

```
if (nilaibutton1 ==1) {
  count1++;
  delay (300);
  if (count1 ==1){
    digitalWrite(relay1, LOW);
    digitalWrite(relay2,HIGH);
    digitalWrite(relay3,HIGH);
```

```
digitalWrite(LED1, HIGH);
digitalWrite(LED2, LOW);
digitalWrite(LED3, LOW);
}
count1 = 0; //RELAY1
```

} else if (nilaibutton2 ==1) {

count2++; delay(300); if (count2==1) { digitalWrite (relay1, HIGH); digitalWrite (relay2, LOW); digitalWrite (relay3, HIGH);

digitalWrite (LED2, HIGH); digitalWrite (LED3, LOW); digitalWrite (LED1, LOW); } count2 = 0; //RELAY2

} else if (nilaibutton3 ==1){
 count3++;
 delay (300);
 if (count3==1){
 digitalWrite (relay1, HIGH);
 digitalWrite (relay2, HIGH);
 digitalWrite (relay3, LOW);

```
digitalWrite (LED1, LOW);
digitalWrite (LED2, LOW);
digitalWrite (LED3, HIGH );
}
count3 = 0; //RELAY3
```

}

}

Lampiran II

Berikut langkah-langkah yang dilakukan dalam proses pemrograman Arduino :

1. Buka aplikasi Arduino.IDE seperti gambar di bawah ini:

File Edit Sket	ch Tools Help	
		2
sketch_jan(06a	
yoid setup // put yo	() { our setup code here, to run once:	^
1		
<pre>void loop() // put yo</pre>	{ our main code here, to run repeatedly:	
3		
	Arduino/G	enuino Uno on COM5

2. Lakukan pemrograman dengan melakukan pengisian *Coding* pada kolom kerja, seperti di bawah ini:

3. Setelah selesai melakukan pengisian program, maka langkah selanjutnya adalah mengecek apakah program yang telah di buat dapat dijalankan oleh arduino atau tidak dengan mengklik tombol centang (*Verify*) pada aplikasi arduino.IDE, seperti pada gambar berikut :

- 4. Setelah itu lalu akan terjadi proses *compiling sketch* pada aplikasi, tunggu hingga proses selesai.
- 5. Setelah selesai *compiling* apabila program berhasil maka pada bar *report* di aplikasi arduino.IDE akan menampilkan *Done Compiling*, seperti gambar berikut :

- 6. Setelah program selesai, maka langkah selanjutnya adalah memasukkan program tersebut ke dalam *Board* arduino yang digunakan.
- 7. Sebelum melakukan proses *Upload* program ke *board* arduino, pilih terlebih dahulu jenis *Board* dan *Port* yang digunakan, dengan mengklik menu *Tools* pada aplikasi Arduino.IDE.
- 8. Setelah memilih Board dan port yang digunakan, lalu *Upload* program yang telah selesai dibuat dengan mengklik tombol *Upload* pada aplikasi arduino.IDE, yang terletak di sebelah tombol *Verify*.

9. Setelah selesai proses *Upload*, maka pada kolom *Report* akan tertulis *Done Uploading*.

